247 research outputs found

    What is the easier and more reliable dose calculation for iv Phenytoin in children at risk of developing convulsive status epilepticus, 18 mg/kg or 20 mg/kg?

    Get PDF
    Background: With the Convulsive Status Guidelines due for renewal, we wondered if a phenytoin dose of ‘20 mg/kg’ would be easier to calculate correctly and therefore safer than the current ‘18 mg/kg’. An educational exercise in dose calculation was therefore undertaken to assess ease of calculation. Method: A standard question paper was prepared, comprising five clinical scenarios with children of varying ages and estimated body weights. Medical students, trainee doctors at registrar and senior house officer level, and consultant paediatricians were asked to complete the exercise, in private, by one of two medical students (SD, PS). Calculations were done with and without a calculator, for 18 mg/kg and for 20 mg/kg in randomised order. Speed and errors (greater than 10%) were determined. The data analysis was performed using SPSS version 18. Results: All answered all 20 scenarios, giving a total of 300 answers per doctor/student group, and 300 answers per type of calculation. When comparing the 2 doses, the numbers of errors more than 10% were significantly less in 20 mg/kg dose (0.33%) as compared to the 18 mg/kg dose (9.3%) (p<0.0001). Speed off calculation was significantly decreased in 20 mg/kg dose when compared with 18 mg/kg dose, with (p<0.001) or without (p<0.0001) the calculator. Speed was more than halved and errors were much less frequent by using a calculator, for the 18 mg/kg dose but no difference with or without the calculator for 20 mg/kg dose. Conclusion: We recommend that the future guidelines should suggest iv Phenytoin at 20 mg/kg rather than 18 mg/kg. This will make the calculation easier and reduce the risk of significant errors

    Factors predicting cessation of status epilepticus in clinical practice: Data from a prospective observational registry (SENSE).

    Get PDF
    To investigate the initial termination rate of status epilepticus (SE) in a large observational study and explore associated variables. Data of adults treated for SE were collected prospectively in centers in Germany, Austria, and Switzerland, during 4.5 years. Incident episodes of 1,049 patients were analyzed using uni- and multivariate statistics to determine factors predicting cessation of SE within 1 hour (for generalized convulsive SE [GCSE]) and 12 hours (for non-GCSE) of initiating treatment. Median age at SE onset was 70 years; most frequent etiologies were remote (32%) and acute (31%). GCSE was documented in 43%. Median latency between SE onset and first treatment was 30 minutes in GCSE and 150 minutes in non-GCSE. The first intravenous compound was a benzodiazepine in 86% in GCSE and 73% in non-GCSE. Bolus doses of the first treatment step were lower than recommended by current guidelines in 76% of GCSE patients and 78% of non-GCSE patients. In 319 GCSE patients (70%), SE was ongoing 1 hour after initiating treatment and in 342 non-GCSE patients (58%) 12 hours after initiating treatment. Multivariate Cox regression demonstrated that use of benzodiazepines as first treatment step and a higher cumulative dose of anticonvulsants within the first period of treatment were associated with shorter time to cessation of SE for both groups. In clinical practice, treatment guidelines were not followed in a substantial proportion of patients. This underdosing correlated with lack of cessation of SE. Our data suggest that sufficiently dosed benzodiazepines should be used as a first treatment step. ANN NEUROL 2019;85:421-432

    Acute Cellular Alterations in the Hippocampus After Status Epilepticus

    Full text link
    The critical, fundamental mechanisms that determine the emergence of status epilepticus from a single seizure and the prolonged duration of status epilepticus are uncertain. However, several general concepts of the pathophysiology of status epilepticus have emerged: (a) the hippocampus is consistently activated during status epilepticus; (b) loss of GABA-mediated inhibitory synaptic transmission in the hippocampus is critical for emergence of status epilepticus; and, finally (c) glutamatergic excitatory synaptic transmission is important in sustaining status epilepticus. This review focuses on the alteration of GABAergic inhibition in the hippocampus that occurs during the prolonged seizures of status epilepticus. If reduction in GABAergic inhibition leads to development of status epilepticus, enhancement of GABAergic inhibition would be expected to interrupt status epilepticus. Benzodiazepines and barbiturates are both used in the treatment of status epilepticus and both drugs enhance GABA A receptor-mediated inhibition. However, patients often become refractory to benzodiazepines when seizures are prolonged, and barbiturates are often then used for these refractory cases of status epilepticus. Recent evidence suggests the presence of multiple GABA A receptor isoforms in the hippocampus with different sensitivity to benzodiazepines but similar sensitivity to barbiturates, thus explaining why the two drug classes might have different clinical effects. In addition, rapid functional plasticity of GABA A receptors has been demonstrated to occur during status epilepticus in rats. During status epilepticus, there was a substantial reduction of diazepam potency for termination of the seizures. The loss of sensitivity of the animals to diazepam during status epilepticus was accompanied by an alteration in the functional properties of hippocampal dentate granule cell GABA A receptors. Dentate granule cell GABA A receptor currents from rats undergoing status epilepticus had reduced sensitivity to diazepam and zinc but normal sensitivity to GABA and pentobarbital. Therefore, the prolonged seizures of status epilepticus rapidly altered the functional properties of hippocampal dentate granule cell GABA A receptors, possibly explaining why benzodiazepines and barbiturates may not be equally effective during treatment of the prolonged seizures of status epilepticus. A comprehensive understanding of the cellular and molecular events leading to the development, maintenance, and cytotoxicity of status epilepticus should permit development of more effective treatment strategies and reduction in the mortality and morbidity of status epilepticus.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65664/1/j.1528-1157.1999.tb00873.x.pd

    Single-neuron dynamics in human focal epilepsy

    Get PDF
    Epileptic seizures are traditionally characterized as the ultimate expression of monolithic, hypersynchronous neuronal activity arising from unbalanced runaway excitation. Here we report the first examination of spike train patterns in large ensembles of single neurons during seizures in persons with epilepsy. Contrary to the traditional view, neuronal spiking activity during seizure initiation and spread was highly heterogeneous, not hypersynchronous, suggesting complex interactions among different neuronal groups even at the spatial scale of small cortical patches. In contrast to earlier stages, seizure termination is a nearly homogenous phenomenon followed by an almost complete cessation of spiking across recorded neuronal ensembles. Notably, even neurons outside the region of seizure onset showed significant changes in activity minutes before the seizure. These findings suggest a revision of current thinking about seizure mechanisms and point to the possibility of seizure prevention based on spiking activity in neocortical neurons

    The priming effect of extracellular UTP on human neutrophils: Role of calcium released from thapsigargin-sensitive intracellular stores

    Get PDF
    P2Y2 receptors, which are equally responsive to ATP and UTP, can trigger intracellular signaling events, such as intracellular calcium mobilization and mitogen-activated protein (MAP) kinase phosphorylation in polymorphonuclear leukocytes (PMN). Moreover, extracellular nucleotides have been shown to prime chemoattractant-induced superoxide production. The aim of our study was to investigate the mechanism responsible for the priming effect of extracellular nucleotides on reactive oxygen species (ROS) production induced in human neutrophils by two different chemoattractants: formyl-methionyl-leucyl-phenylalanine (fMLP) and interleukin-8 (IL-8). Nucleotide-induced priming of ROS production was concentration- and time-dependent. When UTP was added to neutrophil suspensions prior to chemoattractant, the increase of the response reached the maximum at 1 min of pre-incubation with the nucleotide. UTP potentiated the phosphorylation of p44/42 and p38 MAP kinases induced by chemoattractants, however the P2 receptor-mediated potentiation of ROS production was still detectable in the presence of a SB203580 or U0126, supporting the view that MAP kinases do not play a major role in regulating the nucleotide-induced effect. In the presence of thapsigargin, an inhibitor of the ubiquitous sarco-endoplasmic reticulum Ca2+-ATPases in mammalian cells, the effect of fMLP was not affected, but UTP-induced priming was abolished, suggesting that the release of calcium from thapsigargin-sensitive intracellular stores is essential for nucleotide-induced priming in human neutrophils
    • 

    corecore